تاریخ: ۱۲ آبان ۱۴۰۳ ، ساعت ۱۴:۴۷
بازدید: ۱۶۱
کد خبر: ۳۵۷۲۸۲
سرویس خبر : آهن و فولاد
دیدوان (چشم همیشه باز مدیران)

ساخت فولاد سبز با هوش مصنوعی

ساخت فولاد سبز با هوش مصنوعی
‌می‌متالز - صنعت فولاد جهان با اندازه بازار بیش از ۱.۸ تریلیون دلار در سال ۲۰۲۳، سهم قابل‌توجهی در اقتصاد جهانی دارد. بااین‌حال، این صنعت برای بهینه‌سازی عملیات، کاهش هزینه‌ها و حفظ استاندارد‌های سطحِ بالا در بازار رقابت جهانی تحت فشار است. اینجاست که هوش مصنوعی (AI) به‌عنوان آغازگر عصر جدیدی در صنعت فولاد، ظاهر می‌شود و با پتانسیل تحول‌آفرین خود، راه‌حل‌های نوآورانه‌ای را برای مقابله با این چالش‌ها و پیشبرد این صنعت ارائه می‌دهد. این فناوری بر جنبه‌های مختلف صنعت فولاد، از ایجاد تحول در پردازش و توزیع فولاد گرفته تا بهینه‌سازی مدیریت موجودی، تأثیر می‌گذارد.

به گزارش می‌متالز، در میان اولین پذیرندگان هوش مصنوعی، صنعت فولاد به‌دلیل ماهیت پیچیده و داده‌محور بودن آن و اتکا به نیروی کار گسترده، از مابقی صنایع متمایز است. ادغام هوش مصنوعی در صنعت فولاد، عملیات را متحول و فرصت‌های زیادی را برای بهینه‌سازی و افزایش کارایی ایجاد می‌کند. با استفاده از فناوری‌های هوش مصنوعی، شرکت‌های فولادی می‌توانند بهره‌وری را افزایش و هزینه‌ها را کاهش دهند، مصرف انرژی را به حداقل برسانند و رضایت مشتری و کیفیت محصول را نیز بهبود بخشند. به همین دلیل است که صنعت فولاد سرمایه‌گذاری‌های بسیاری در زمینه هوش مصنوعی در سال‌های اخیر انجام داده است. شکل شماره ۱ مؤید سرمایه‌گذاری رو‌به‌رشد فولادسازان است.

در طول چند سال گذشته، هوش مصنوعی به دلیل قابلیت‌های پردازش قدرتمند حجم وسیعی از داده‌ها، پیشرفت چشمگیری داشته است. «داده» یک عامل صرفه‌جویی در انرژی است و انرژی محرک ماشین‌آلاتی است که مواد خام را به ستون فقرات تمدن مدرن تبدیل می‌کنند. این اشتهای سیری‌ناپذیر برای انرژی به هزینه‌های زیاد برای تولیدکنندگان فولاد و ردپای قابل‌توجه زیست‌محیطی منجر می‌شود. بااین‌حال، وضعیت تغییر کرده و هوش مصنوعی به‌عنوان یک ابزار قدرتمند برای هدایت صنعت فولاد پایدارتر و مقرون به‌صرفه‌تر و مقابله با چالش‌های زیست‌محیطی در حال ظهور است.

در همین راستا شرکت Fero Labs مستقر در شهر نیویورک راه را در استفاده از هوش مصنوعی برای توسعه دستورالعمل‌های سبز جهت بازیافت فولاد باز کرده و به‌طور مؤثر به این چالش‌ها رسیدگی می‌کند. بازیافت فولاد مشکلات منحصربه‌فردی را به همراه دارد. در درجه اول به این دلیل که هر دسته (Batch) از ضایعات فولادی ذوب‌شده، دارای ترکیب شیمیایی مشخصی است. این تنوع می‌تواند استحکام فولاد جدید تولیدشده را تحت تأثیر قرار دهد. این موضوع غالباً کارخانه‌ها را مجبور می‌کند که هر دسته را با مواد تازه استخراج‌شده ترکیب کنند تا استاندارد‌های صنعت را برآورده سازند. بااین‌حال، این فرآیند نه‌ تنها پرهزینه، بلکه پیچیده است و اغلب منجر به استفاده بیش‌ازحد از منابع دست‌اول می‌شود که این امر، انتشار گاز‌های گلخانه‌ای را به همراه خواهد داشت.

Berk Birand، مدیرعامل شرکت Fero Labs و یکی از بنیان‌گذاران آن، توضیح می‌دهد که چگونه هوش مصنوعی به پلتفرم این شرکت برای رسیدگی به این چالش‌ها کمک می‌کند. با ایجاد کپی مجازی از فرآیند‌های تولید فولاد، فناوری Fero نشان می‌دهد که کارخانه‌های فولادی معمولاً حدود ۹ درصد بیشتر از نیاز خود، از منابع استفاده می‌کنند. تولیدکنندگان می‌توانند با کمک هوش مصنوعی و با تجزیه‌وتحلیل کل فرآیند بازیافت و به‌کارگیری بهترین شیوه‌ها، نیاز به آلیاژ‌های جدید را به حداقل برسانند.

این نرم‌افزار از رویکرد یادگیری ماشین بیزی (Bayesian machine learning) به‌منظور تعیین مقدار بهینه مواد اضافی موردنیاز برای هر دسته از فولاد‌های بازیافتی مذاب استفاده می‌کند. به گفته Birand، مدل هوش مصنوعی می‌تواند کارایی هر دسته یا فرآیند را با دقتِ به اصطلاح جراحی به حداکثر برساند و خطر خطای انسانی را به میزان قابل‌توجهی کاهش دهد. پس از آموزش کافی با داده‌های تولید، نرم‌افزار به‌صورت بی‌درنگ راهکار ارائه می‌کند و به تولیدکنندگان اجازه می‌دهد اهداف پایداری خود را بدون قربانی کردن سود یا کیفیت دنبال کنند. Birand توضیح می‌دهد که این مدل به‌عنوان یک جعبه سفید (White Box) عمل می‌کند و کاربران را قادر می‌سازد تا نتایج یادگیری آن را درک و ارزیابی کنند. او می‌گوید که مدل‌های ما برای شناسایی دستور پخت مناسب، گرما و کارایی عملیاتی برای به حداکثر رساندن بازده، کاهش ضایعات و به حداقل رساندن استفاده از منابع دست‌اول طراحی شده‌اند. تأثیر هوش مصنوعی بر تولید فولاد قابل‌توجه است. در پنج کارخانه‌ای که از نرم‌افزار Fero Labs استفاده می‌کنند، الگوریتم‌های یادگیری ماشین به‌طور مؤثری تخصص مهندسان را بهبود بخشیده‌اند و به آنها اجازه می‌دهند تا با چالش‌های پیچیده‌تری نسبت به روش‌های سنتی مقابله کنند. وظایفی که زمانی نیازمند ماه‌ها تلاش اختصاصی بود، اکنون در چند دقیقه تکمیل می‌شوند و عملکرد را بهینه می‌کنند و هزینه‌ها و انتشار گاز‌های گلخانه‌ای را کاهش می‌دهند. Birand تأکید می‌کند که «پس از استقرار این مدل، شرکت‌های فولادی ۹۰ برابر سریع‌تر از روش‌های سنتی به نتایج می‌رسند.»

ادغام هوش مصنوعی توسط آزمایشگاه‌های Fero به نتایج قابل‌توجهی منجر شده است؛ بیش از ۲۰ میلیون دلار صرفه‌جویی، کاهش بیش از ۱۰۰ هزار تن انتشار کربن و حفظ یک میلیون پوند مواد خام. با توجه به اینکه صنعت فولاد مسئول ۱۱ درصد از انتشار کربن در جهان است، پتانسیل هوش مصنوعی برای هدایت شیوه‌های پایدار بسیار زیاد است. Fero Labs ادعا می‌کند که نرم‌افزار آن می‌تواند استفاده از مواد معدنی در تولید فولاد را تا ۳۴ درصد کاهش دهد. گزارش سال ۲۰۲۱ از سوی «مشارکت جهانی در زمینه هوش مصنوعی» (Global Partnership on Artificial Intelligence) تخمین می‌زند که اجتناب از استخراج، ذوب و حمل‌ونقل این آلیاژ‌ها می‌تواند از انتشار حدود ۴۵۰ هزار تن کربن در سال جلوگیری کند. اگر این رویکرد در سراسر چشم‌انداز تولید فولاد ایالات‌متحده اتخاذ شود، می‌تواند از انتشار حدود ۱۱.۹ میلیون تن کربن در هر سال جلوگیری کند که معادل یک‌چهارم کل انتشارات شهر نیویورک است. این دستاورد نشان می‌دهد که هوش مصنوعی نه‌ تنها می‌تواند به بهبود کارایی و کاهش هزینه‌ها کمک کند، بلکه می‌تواند نقش کلیدی در کاهش اثرات زیست‌محیطی صنایع سنگین ایفا کند. با گسترش این فناوری در سایر بخش‌های تولیدی، پتانسیل جهانی برای کاهش چشمگیر انتشار کربن و حفاظت از منابع طبیعی به طرز قابل‌توجهی افزایش می‌یابد.

منابع:

  1. https://flyingmum.medium.com/how-artificial-intelligence-ai-is-revolutionizing-the-steel-industry
  2. https://gunungcapital.com/role-of-artificial-intelligence-in-the-steel-industry/
  3. https://new.abb.com/metals/insights/unlocking-data-to-generate-tangible-value-for-the-steel-industry
  4. https://qz.com/fero-labs-ai-steel-recycling-carbon-emissions-۱۸۵۰۹۶۱۳۳۹

منبع: فولاد مبارکه اصفهان

مطالب مرتبط
عناوین برگزیده